1 CAPNOGRAPHY 2015

Andrew Herlich DMD MD FAAP Professor and Vice-Chair for Faculty Development Department of Anesthesiology University of Pittsburgh School of Medicine

2 DISCLOSURES

- I have no financial interests in any product or company
- · I do not receive honoraria for speaking for commercial entities
- I am a *volunteer/unpaid* Hotline Consultant for the Malignant Hyperthermia Association of the United States
- I am the President-Elect of the Pennsylvania Society of Anesthesiologists and Liaison from the ASA to the ADA, AAOMS, ADSA

3 AUDIENCE RESPONSE QUESTION TO START THE DAY

- AAOMS should have instituted capnography as a standard of care years ago (Show of hands)
- Yes
- No

4 BUT I HAVE PULSE OXIMETRY

- Do I really need capnography?
- The OAE used to recommend observation, pre-tracheal auscultation, and OPTIONAL capnography for non-intubated patients
- I have never had a problem
- It costs too much

5 WHY IS CAPNOGRAPHY IMPORTANT?

- Bailey PL, Pace NL, Ashburn MA, et al. *Frequent hypoxemia and apnea after sedation with Midazolam and Fentanyl.* Anesthesiology 1990; 73: 826-830.
- 80 patients in database DIED
- Replicate data using healthy human volunteers.
- Fentanyl alone depressed the ventilatory response to carbon dioxide

6 TAKE HOME MESSAGE

- "Our results demonstrate that midazolam, when combined with an opioid, is likely to place patients at high risk for hypoxemia and apnea."
- "...the availability of persons skilled in airway management are recommended when these or similar type drugs are combined for patient sedation in any clinical setting."
- Capnography "catches" the problem before pulse oximetry does!

WHAT IS THE EFFECT OF FENTANYL ON THE PHARMOKINETICS OF MIDAZOLAM?

- Hase I, Oda Y, Tanaka K et al. I.V. Fentanyl Decrease the Clearance of Midazolam. Br J Anaesth 1997; 79: 740-743.
- Both fentanyl and midazolam are metabolized by the liver enzyme CYP3A in the cytochrome P450 isozymes

 Study using normal, healthy volunteers **8** STANDARD ASSUMPTIONS USING PULSE OXIMETRY? All hemoglobin: oxygenated or reduced • No other absorbers between emitter and detector All blood that "pulsates" is arterial blood ٠ • Petterson, Begnoche, Graybeal: The effect of motion on pulse oximetry and its clinical significance. Anesth Analg 2007; 105: S78-S84. 9 HOW DOES IT WORK? • It is a light tissue interaction • Obeys Lambert-Beers Law • "...light decays as it passes through a nonscattering, light-absorbing substance comprised of one or more components." The problem: Heterogeneous tissues Mannheimer: The Light-Tissue Interaction of Pulse Oximetry. Anesth Analg 2007; 105: S10-S17. 10 LIMITATIONS OF PULSE OXIMETRY Abnormal hemoglobins may not be accurately detected by the usual technology • Newer technology- may measure 12 light wavelengths Methemoglobin, Carboxyhemoglobin, Total hemoglobin • Barker, Badal: The measurement of dyshemoglobins and total hemoglobin by pulse oximetry. Curr Opin Anaesth 2008; 21: 805-810. **11** IMPORTANT LIMITATIONS OF PULSE OXIMETRY: SAFE LIMITATIONS Motion Poor perfusion Skin pigmentation Nail polish and artificial nails • Irregular rhythms Unusual electromagnetic interference • Fouzas, Priftis, Anthracopoulos: Pediatrics 2011; 128: 740-752 12 DISE OXIMETRY: POTENTIALLY UNSAFE LIMITATIONS 1 PROBLEM 2 • Calibration Time lag Probe positioning

- Ambient light interference
- •

•

- Intravenous dyes
- POSSIBLE SOLUTION
- Use newest generation device
 - Use newest generation device
 - · Assure sensor and emitter are exactly opposite and age appropriate size
 - · Cover probe with metallic foil
 - Be prepared for lower SpO2 (transiently)
 - •

13 BASIS OF NEXT SLIDE

- Benumof et al: Critical hemoglobin desaturation will occur before return to an unparalyzed state following 1mg/kg intravenous succinylcholine. Anesthesiology 1997; 87: 979-982.
- VERY IMPORTANT CONCEPTS

14 🔲 WHAT DOES THIS MEAN TO YOU AND YOUR PATIENT?

- The patient is 100% saturated
- They are safe
- However, is everything ok?
- It depends upon where the patient "resides" on the oxygen-hemoglobin desaturation curve

15

16 III THE REAL OXYGEN-HEMOGLOBIN DESATURATION CURVE

17 REMEMBER THE BASIC SCIENCES?

- Alveolar-Air Equation
- •
- PaO2=FiO2(Pb-PbH2O)-PaCO2/RQ (0.8)
- •
- At sea level= Room Air or 21%
 - -0.21(760-47)→149-40/0.8→149-50→→→99
- •
- At sea level= 100% oxygen
 - -1(760-47)→1(713)-40/0.8 → 713-50→→→663

18 PAO2 OXYGEN SATURATION RELATIONSHIPS

- 1 PaO2
- 2 40
 - 50
 - 60
 - 97
 - •
 - 26-28

- ³ SP02
- 4 **70**
 - 80
 - 90
 - 97
 - •
 - 50

19 REALITY CHECK

- At what point of oxygen saturation can the average human eye detect a color change?
- 95%
- 92%
- 87%
- 77%

20 REALITY CHECK II

- What is the PaO2 of the O2 saturation at which you can detect hypoxemia?
- 92
- 87
- 77
- 59

²¹ THE MORE IMPORTANT ANESTHESIOLOGY MONITOR (AT LEAST FOR THIS DISCUSSION)

BACK TO CAPNOGRAPHY

22 OBSERVATION OF RESPIRATION

- Can the chest wall/abdomen move without gas exchange?
- Sure it can...

23 PRETRACHEAL AUSCULTATION

- Can auscultation be muffled?
- · What happens with ambient noise?
 - Music
 - Pulse oximetry tone
 - Conversation
 - Poorly adherent to skin
 - You have a Bluetooth device? (\$500)
- Have one PLUS capnography not instead

24 🔲

- 25 🔲
- 26

27 CAN YOUR ASSISTANT HEAR WHAT YOUR ARE HEARING AND HELP IF THERE IS A PROBLEM?

28 🔲 <u>HOWEVER....</u>

29 WHY CAPNOGRAPHY

- The basics
- Mainstream vs. Sidestream
- · What works in the office

30 EXCELLENT COMPREHENSIVE REFERENCE

 <u>CAPNOGRAPHY 2ND EDITION</u>. EDS. JS GRAVENSTEIN, MICHAEL B. JAFFE, NIKOLAUS GRAVENSTEIN, DAVID A. PAULUS, CAMBRIDGE UNIVERSITY PRESS, 2011

31 SIDE STREAM CAPNOGRAPHY

32 SIDESTREAM CAPNOGRAPHY

- Utilizes gas sampling line
- Connect at elbow or straight connector
- · Continuously aspirated at rate of 50-250 ml per minute

•

33 ADVANTAGES OF SIDESTREAM

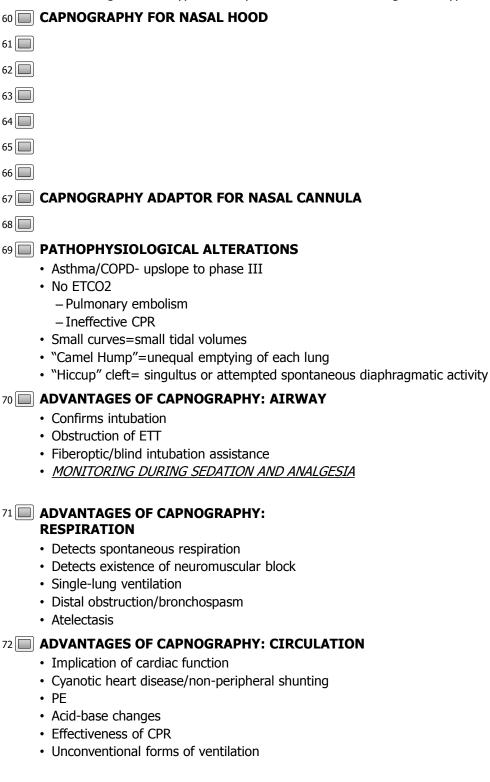
- · Airway connection is light
- Widely available for CO2, O2, N2O
- Airway connectors replacements "cheap"
- · Easily used on non-intubated patients with sample dilution likely
- Connection by tube not cable

34 DISADVANTAGES OF SIDESTREAM

- Multiple components required: airway adapter, sample tube, filters/water trap, water-permeable tubing in certain environments
- Sample to waveform time- < 3 seconds
- Waveform variable depending upon sample rate, mixing, sample cell design, accessories such as airway adapter vs nasal cannula

35 MORE DISADVANTAGES OF SIDESTREAM

- Water vapor pressure affected due to condensation and drying of sample
- Water traps occasionally clog
- Gas scavenging required
- Pressure fluctuations due to sample rate but compensated with measurement of pressure



39 🔲

40	EXCELLENT CAPNOGRAPHY REVIEW
	 Kodali BS: Capnography outside the Operating Rooms. Anesthesiology 2013; 118: 1- 10
	Addresses similar concerns for the OMFS
	GI suite Emergency Room
41	FROM KODALI/ANESTHESIOLOGY 2013
42	THE NEXT SET OF SLIDES WILL DEMONSTRATE
	Capnographic displays in differing clinical situationsAll from the Kodali article
43 🔲	SPONTANEOUS BREATHING (SIMILAR TO OPEN AIRWAY)
44	VARYING LEVELS OF SEDATION WITH ROOM AIR OR OXYGEN
45 🔲	NEXT SEVERAL SLIDESDemonstrate problems with intubated or closed airway situations
46	ASTHMA/COPD
47	PROBABLE CUFF LEAK WITH CARDIAC OSCILLATIONS
48	MECHANICAL VENTILATION WITH INTERMITTENT SPONTANEOUS BREATHS
49	MECHANICAL VENTILATION WITH INTERMITTENT SPONTANEOUS BREATHS
50	EARLY ATTEMPTS AT SPONTANEOUS RESPIRATION AFTER NEUROMUSCULAR BLOCKADE
51	THE NEXT SEVERAL SLIDES ARE CRISIS ISSUES
	It is worthwhile discussing these in depth!
55 🔲	 CAPNOGRAPHY WITH EQUIPMENT MALFUNCTION These are not every day occurrences but are noteworthy
56 🔲	SUDDEN INCREASE IN BASELINE DUE TO MOISTURE IN/NEAR SENSOR
57	INSPIRATORY VALVE MALFUNCTION
58	DOES IT REALLY DECREASE HYPOXIC EVENTS?
	 Deitch et al: Does end tidal CO2 monitoring during emergency department procedural sedation and analgesia with propofol decrease the incidence of hypoxic events: a randomized, controlled trial. Annals of Emergency Medicine 2010; 55: 258-264.

59 THEIR CONCLUSIONS

 "In adults receiving ED propofol sedation, the addition of capnography to standard monitoring reduced hypoxia and provided advance warning for all hypoxic events"

73 ADVANTAGES OF CAPNOGRAPHY: ANESTHESIA DELIVERY DEVICES · Adequacy of fresh gas flow during spontaneous ventilation Circuit leaks/disconnects Soda lime exhaustion Anesthesia machine inspiratory/expiratory valve malfunction 74 ADVANTAGES OF CAPNOGRAPHY: PATIENT PHYSIOLOGY/WELL-BEING Venous thromboembolism Malignant hyperthermia Seizures CO2 retention 75 ADVANTAGES OF CAPNOGRAPHY: NON-OR USES Confirm endotracheal intubation Respiratory failure Apnea or respiratory monitoring Misplacement of NG tube 76 NOT CONVINCED YET? • I believe it is a ploy/conspiracy by the ASA, AAOMS, and capnography manufacturers. Show of hands Yes No 77 OPEN AIRWAY EQUIVALENT TO OMFS · Procedural sedation in the Emergency Room 9 studies reviewed ALL affirmed that capnography signaled danger prior to hypoxia (pulse oximetry) • Burton F: Should capnography be routinely used during procedural sedation in the emergency department? Emerg Med J 2012; 29: 164-166. •

-

78 🔲 ANOTHER OPEN AIRWAY EQUIVALENT TO OMFS

- Friedrich-Rust M, Welte M, Welte C, et al. Capnographic monitoring of propofolbased sedation during colonscopy. Endoscopy 2014; 46: 236-244.
- Study: All patients had either colonoscopy or colonoscopy with EGD (Esophagogastroduodenoscopy), all receive 2L O2, all nasal cannula with an oral sampling port
- ⁷⁹ OUTCOME MEASURES-DEFINED AS SpO2 DROP OF <90% FOR GREATER THAN 15 SECONDS OR MORE
 - Secondary measures
 - Incidence of severe hypoxia <85%
 - Increase of O2 supplementation

- Episodes of apnea (EtC02 at 0 for > 10 sec)
- Time difference between apnea and hypoxemia
- Assisted ventilation
- Incidence of hypotension (sys BP <100) or bradycardia (HR < 50)

80 EVENTS WITH P VALUE <0.05

- Hypoxemia for greater than 15 seconds
 - P value 0.00091
- · Number of hypoxemic events
 - P value 0.000066

_

81 INDEPENDENT RISK FACTORS FOR HYPOXEMIA

- Age (P 0.00015)
- BMI (P 0.0044)
- History of OSA (P 0.025)
- Total dose of Propofol (P. 0.031)
- Dose of ketamine (when indicated) (P 0.000001)

82 A REDUCTION OF HYPOXEMIA USING CAPNOGRAPHY VS WITHOUT CAPNOGRAPHY

• 14%

83 RISKS OF ANESTHESIA OR SEDATION OUTSIDE THE OPERATING ROOM: THE ROLE OF THE ANESTHESIA CARE PROVIDER:

- Metzner and Domino: Current Opinion in Anesthesiology 2010: 23: 523-531.
- Conclusions: "...monitoring for respiratory depression is essential. "...pulse oximetry is far from ideal in detecting ventilatory compromise (e.g. hypoventilation, airway obstruction or apnea).

84 🔲

ANOTHER QUOTE FROM THE SAME ARTICLE...

• "Use of capnography for monitoring the adequacy of ventilation, anesthesia specialists in higher risk patients, and adequate training for non-anesthesia providers can enhance safety of sedation/anesthesia in out-of-operating room settings."

85 2015 ARTICLE

- Green SM, Andolfatto G. Managing propofol-induced hypoventilation. Annals of Emergency Medicine 2015; 65: 57-60.
- Patient selection...(where is the surprise here?)
- · Avoid opioid co-administration (where is the surprise here?)
- Preoxygenation (no surprise again)
- Titration of medication
- CAPNOGRAPHY!!!!!!!!! Capnography detects hypoventilation first (breath/breath quality)

86 IN A RECENT PUBLICATION BY RICH ROBERT....

- He champions the use of both capnography and Blue Tooth pretracheal or precordial stethoscope
- The use of one does not supplant the need for the other
- They are complimentary and should be used together.
- An example he cites is as follows: "...a faint gurgling sound often heralds the buildup of secretions that may precipitate a laryngospasm, and mild wheezing and other adventitial breath sounds..."

87 WE SHOULD HAVE BOTH

- · Power failures occur- your stethoscope doesn't unless you fail to use it.
- · Mother boards of monitors fail- your stethoscope doesn't unless you fail to use it.

88 THE NEXT FEW SLIDES...

 Results of data recently available from dental program directors concerning capnography!

89 SOME RESPONSES BY POLLS

- 54% agree or strongly agree with the need for capnography during moderate sedation/open airway
- Only 1/2 of polled pedodontists agree/strongly agree with its need

90 **NEGATIVE COMMENTS**

- "Capnography is expensive, there is a learning curve, and unless the patient is intubated, there can be an error in gas sampling."
- "Safe moderate sedation practice rests on the practitioner and not on capnography monitoring mandate."
- Evidence of the need for capnography is lacking. In moderate sedation used in this group, 3 lead ECG and pre-cordial stethoscope is sufficient
- Not aware of what capnography is but will Google it!

91 **FRIGHTENING COMMENTS**

- Though it is policy, it isn't followed because most anesthesiologists disagree with the policy due to the added cost per case (\$13)
- Where is the evidence in a dental setting
- Belief that capnography during moderate sedation is virtually a worthless tool and adds unnecessary expense to the procedure!

92 **POSITIVE COMMENTS**

- It should be considered standard of care once moderate sedation is initiated
- Initially felt it was going to add complication to care, now it is mandatory for patient safety.
- It should be instituted and mandated for all teaching programs
- This is the most reliable way of sensing whether or not the patient is breathing
- · All dental specialties and general practice should use it if ASA, AAOMS, AANA mandate its use.

93 AFTER THIS DISCUSSION, I...

- Still think that capnography is overly hyped!
- ...should have started using it long ago!
- Think that observation of the patient, chest wall excursions, pretracheal/precordial

stethoscope alone are as accurate as capnography!

- Will never use capnography...I am the old guy in the practice and too close to retirement!
- Let the new kid in the practice buy it! I am still not convinced!

94 BIBLIOGRAPHY FOR THE TOPIC

- Ortega F, Connor C, Kim S, et al. Monitoring ventilation with capnography. N Engl J Med 2012; 367: 19: e27 1-5.
- Kodali, BS. Capnography Outside the Operating Rooms. Anesthesiology 2013; 118: 192-201.
- Laviv A, Seldin EB, Dodson TB. A simple modification to the nasal hood to facilitate capnographic measurements: a technical note. J Oral Maxillofacial Surg. 2013; 71: 854-855.
- Robert RC, Liu S, Patel C, Gonzalez ML. Advancements in office-based anesthesia in oral and maxillofacial surgery. Atlas Oral Maxillofacial Surg Clin North Am 2013; 21: 139-165.

95 MORE ARTICLES

- Sheahan CG, Mathews DM. Monitoring and delivery of sedation. Brit J Anaesth 2014; 113: ii37-ii47
- Waugh et al. Capnography enhances surveillance of respiratory events during procedural sedation: a meta-analysis. J Clin Anesth 2011; 23: 189-196
- Manifold CA et al. Capnography for the nonintubated patient in the emergency setting. J Emerg Med 2013; 45: 626-632
- Cook TC, Behringer EC, Benger J. Airway management outside the operating room: hazardous and incompletely studied. Curr Opin Anesthesiol 2012; 25: 461-469

96 THANK YOU